A Rarely Observed Stellar Dance

Back to All Perspectives Stories
James Urton/UW News 02/17/2021 February 2021 Perspectives
An image from the Digitized Sky Survey showing HS Hydrae in the center.

The sun is the only star in our system. But many of the points of light in our night sky are not as lonely. By some estimates, more than three-quarters of all stars exist as binaries — with one companion — or in even more complex relationships. Stars in close quarters can have dramatic impacts on their neighbors. They can strip material from one another, merge or twist each other’s movements through the cosmos.

And sometimes those changes unfold over the course of a few generations.

That is what a team of astronomers from the University of Washington, Western Washington University and the University of California, Irvine discovered when they analyzed more than 125 years of astronomical observations of a nearby stellar binary called HS Hydrae. This system is what’s known as an eclipsing binary: From Earth, the two stars appear to pass over one another — or eclipse one another — as they orbit a shared center of gravity. The eclipses cause the amount of light emitted by the binary to dim periodically.

On Jan. 11 at the 237th meeting of the American Astronomical Society, the team reported more than a century’s worth of changes to the eclipses by the stars in HS Hydrae. The two stars began to eclipse in small amounts starting around a century ago, increasing to almost full eclipses by the 1960s. The degree of eclipsing then plummeted over the course of just a half century, and will cease around February 2021.

“There is a historical record of observations of HS Hydrae that essentially spans modern astronomy — starting with photographic plates in the late 19th century up through satellite images taken in 2019. By diving into those records, we documented the complete rise and fall of this rare type of eclipsing binary,” said team leader James Davenport, a research assistant professor of astronomy at the UW and associate director of the UW’s DIRAC Institute.

The eclipses of the two stars that make up HS Hydrae are changing because another body — most likely a third, unobserved companion star — is turning the orientation of the binary with respect to Earth. Systems like this, which are called evolving eclipsing binaries, are rare, with only about a dozen known to date, according to Davenport. Identifying this type of binary requires multiple observations to look for long-term changes in the degree of dimming, which would indicate that the orientation of the binary is changing over time.

Continue reading this UW News story. 

More Stories

Sarah Levin-Richardson in her office, with books on shelves behind her.

Lifting Marginalized Voices — from Ancient Rome

"Interesting, frustrating, and necessary,” is how Sarah Levin-Richardson, professor of Classics, describes her research into the lives of enslaved individuals in the ancient world. 

Ashleigh Therberge and research team members looking at equipment in her UW chemistry lab.

How a Chemistry Lab is Transforming Clinical Research

Ashleigh Theberge's UW lab creates bioanalytical chemistry tools. Some are transforming how clinical studies can be conducted. 

Marshall Baker standing next to a chalkboard with physics notations

Still Fascinated by Physics

"The questions are long-term questions," emeritus professor Marshall Baker says of his theoretical physics, which he is still pursuing at age 91. 

Explore Stories Across Arts & Sciences Departments